If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+2x=448
We move all terms to the left:
3x^2+2x-(448)=0
a = 3; b = 2; c = -448;
Δ = b2-4ac
Δ = 22-4·3·(-448)
Δ = 5380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5380}=\sqrt{4*1345}=\sqrt{4}*\sqrt{1345}=2\sqrt{1345}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1345}}{2*3}=\frac{-2-2\sqrt{1345}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1345}}{2*3}=\frac{-2+2\sqrt{1345}}{6} $
| -(3x+x)=-x+10 | | 1.1x=8.9 | | 5d=4d+1.5 | | 2/9y-7=-5 | | 800-10(800)+.25(800)^2=x | | .33x-9=14x-7-13x | | 2y÷3=4 | | 2a+a=2.5+2a | | 800-10(300)+.25(300)^2=x | | 3/9y-7=-5 | | 4(2x+5)-3x=25 | | 1/6j=8 | | 800-10(240)+.25(240)^2=x | | 12x-22=13x+15 | | 800-10(80)+.25(80)^2=x | | 12x-6=10=6x-3=5 | | 2+5k=7k−6 | | .4x+.25(100-x)=27 | | 2(4+2x)+5x=71 | | 800-10(120)+.25(120^2)=x | | 14+4-14c=36 | | 8a+12=6 | | -16+11=-5(x+7) | | 800-10(120)+.25(120)^2=x | | 11t=7 | | 4x-27=15+6x | | 5x-30=x+30 | | x2-3=45 | | 6/3x=40/3+8/3x | | c=800-10(120)+.25(120)^2 | | 1.3x+2.7=10 | | 3x-2+16+3x-2+16=172 |